Friday, 11 October 2019

Can open tubal microsurgery still be helpful in tubal infertility treatment?

Abstract

In 30 years, 1,669 patients underwent open microsurgery for tubal diseases. Several techniques like adhesiolysis, reanastomosis, fimbrioplasty, salpingoneostomy, proximal reconstruction, isthmo-ostial anastomosis and reimplantation are described. Results were excellent for patients with a favourable prognosis (1,517 patients) and with very high pregnancy rate: 80% pregnancies with delivery for tubal reversal, 68% for proximal diseases, 75.1% for fimbrioplasty and 55% for salpingoneostomy. Risks of ectopic pregnancy were very low: 1.5% for tubal reversal (because the tubes were healthy), 4% for proximal diseases, 4% for fimbrioplasty and 6.7% for salpingoneostomy. Results were very low for patients with a poor prognosis (152 patients): 10% pregnancies with delivery for distal diseases, less than 20% for proximal diseases and 22% ectopic pregnancies. Open microsurgery can still be helpful in treating tubal infertility: results are better than those obtained with laparoscopic reconstructive surgery and better than those obtained with in vitro fertilization for patients with a favourable prognosis. Patients are only operated one time and can have several pregnancies. Open tubal microsurgery is a minimal invasive surgery and saves costs (it requires a small number of instruments and minimises sutures; patients can return home 4 days after surgery, at the latest). Results on fertility are very favourable.

Between 1977 and 2007, 1,669 patients underwent a minilaparotomy for tubal diseases. Minilaparotomy means a laparotomy with minimal tissue injury, applying microsurgical principles and procedures.

One of the first principles we followed was the temporary but absolute contraindication for surgery in case of active infection and active inflammation (for example endometriotic red lesions).

We also applied the following principles:

  • gentle handling of tissues

  • atraumatic manipulation of the tubal serosa and mucosae, of the ovary and of the peritoneum

  • selective bipolar coagulation: only the vessels (and not the surrounding area) must be dessicated by fine bipolar microelectrodes

  • continuous irrigation to keep the surgical area clear at all times and to avoid the tissue from drying out (and especially the tubal serosa and the ovary)

  • perfect protection of the abdominopelvic cavity against infection risk using the sterile “wound drape”

  • complete resection of pathologic tissues

  • complete restoration of the serosa: closure of all peritoneal defects to avoid formation of de novo adhesion and recurrence of previous adhesion (peritoneal defects in case of adnexal disease due to previous infection or inflammation do not scar easily and quickly because the subserosal tissue is not a normal tissue; it is usually rich in inflammatory cells). A peritoneal closure with fine material and inverted stitches scars better and faster than a large defect without peritoneal closure

  • use of very fine resorbable sutures 7/0 and 8/0

  • last, use of a well mastered surgical technique: the surgery must be successful the first time. Repeat surgery never gives favourable results



Preoperative investigations

All patients had complete investigations: hormonal analysis, male analysis, hysterosalpingography, hysteroscopy and sometimes recanalisation, diagnostic laparoscopy with blue dye test. Results were written down before surgery and then compared with operative images (all surgery were taped first with 8-, then 16-mm film camera Beaulieu, and then with 3-CCD Sony DXC 930 P video camera) and with postoperative histological examination of all resected lesions. The analysis is therefore not entirely retrospective.

Preoperation and per operation procedures

Prior to the laparotomy, a Pezzer catheter is introduced into the uterine cavity. This catheter is brought into sterile fields and allows the preoperative injection of sterile dilute methylene blue solution for verification of the tubal patency. After a short Pfannenstiel incision (6/7 cm), we protect the pelvis with a “wound-drape”. The uterus and adnexa are elevated by packing the Douglas cul-de-sac with moistened compresses. Continuous irrigation of the surgical area using a physiological salt solution mixed with noxytioline and corticoid (permanently evacuated by a Redon drain positioned in the Douglas pouch) keeps the operating area always clear. It keeps the tissues always moistened to prevent tissue drying, avoids formation of adhesion and allows for bipolar coagulation. Extreme gentleness is exercised. Tissue traumatism is prevented by the gentle handling the tubes and the ovary with fingers rather than sharp instruments. At the end of the operating time, a meticulous cleaning of the pelvic cavity is useful.

For 30 years, several peritoneal instillates were used: Ringer's lactate which is not compatible with noxytioline, 30% dextran 70, Intergel, icodextrin 4% solution, etc., but we think it is not necessary to use instillates if the microsurgical technique is perfect: minimal tissue traumatism, perfect haemostasis, no tissue necrosis, no infection risk. We do not use these instillates in case of tubal reversal because the tubes are healthy; there is no peritoneal defect and no risk of adhesion.

Conclusions

Open tubal microsurgery is really a minimal invasive surgery and can still be an excellent technique for most of tubal diseases. There is no competition between tubal microsurgery and IVF; they are complementary.

For tubal reversal, microsurgery must be performed first because pregnancy rate is very high. IVF cannot give same results, especially when 45% of patients are more than 40 years old (patients above 40 years of age had tubal reversal because they were still fertile, and their tubes were still healthy). There was no significant difference with regards to age on pregnancy results (but we did not operate patients above 43 years old). For distal and proximal diseases, patients of 40 years old are usually patients with poor prognosis and cannot be operated (distal lesions can be quite old and can create the atrophy of the mucosae; old proximal disease can be extended). In the future, laparoscopic reversal could present same results for pregnancy with delivery but ectopic pregnancy rate must be reduced by use of fine sutures (8/0), fine instruments and best technique of suturing.


For distal tubal lesions, more than 50% of the patients have a poor prognosis. These tubes must be resected in order to increase favourable results for IVF. On the other hand, distal lesions with favourable prognosis must be operated first. In case of failure, IVF can be performed 1 year after surgery (Table 1). Laparoscopic surgery cannot presently give same results because laparoscopic adhesiolysis is still too traumatic, and electrocoagulation damages too much tubes and ovaries. It is also important to use an optimal suturing technique.

For proximal lesions, about 30% of patients have poor prognosis. They must have IVF, but it is usually uterine adenomyosis extending to the tubes; and IVF does not yield favourable results. Proximal lesions with favourable prognosis must be treated first by microsurgery, followed by IVF 1 year later if the patient is not older than 38 years of age (Table 3). In case of proximal lesions with favourable prognosis, open microsurgery is easier and more precise than laparoscopic microsurgery, even when assisted by a robot.


Dr shweta kaul jha is one of the Best IVF specialist in indore, providing a wide variety of infertility treatments as well as in vitro related procedures such as IVF-ICSI, genetic testing, preserving fertility in cancer patients, and many more at affordable ivf cost in indore. Book an appointment call 88890-16663 or visit www.carewomenscentre.com


Please go through our social media :

like our page to no more about ivf 


Please do follow on Instagram 




No comments:

Post a Comment